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Abstract

Faraday waves form on the surface of a fluid which is subject to vertical forcing, and are researched in a large
range of applications. Some examples are the formation of ordered wave patterns and the controlled walking
or orbiting of droplets (Couder et al.| (2005); |Saylor and Kinard| (2005))). Moreover, recent studies discovered
the existence of a horizontal velocity field at the fluid surface, called Faraday flow, which was shown to ex-
hibit an inverse energy cascade and thus properties of two-dimensional turbulence (von Kameke et al., 2011,
2013} |Francois et al.,2013)). Additionally, three-dimensionality effects have been part of recent investigations in
quasi-2D flows (both electromagnetically-driven (Kelley and Ouellette, [2011; Martell et al.,[2019) or produced
by parametrically-excited waves (Francois et al., 2014; |Xia and Francois, |2017))). Furthermore, the occurrence
of an inverse cascade in thick layers is also subject of current studies on the coexistence of 2D and 3D turbu-
lence (Biferale et al., 2012} [Kokot et al., 2017; Biferale et al., [2017). By performing 2D PIV measurements
at horizontal planes beneath the Faraday waves, we recently showed that pronounced three dimensional flows
occur in the bulk, with much larger spatial and temporal scales than those on the surface (Colombi et al., 2021)),
when the system is not shallow in comparison to typical length scales of the surface flow (fluid thickness ex-
ceeding half the Faraday wavelength Ar). This in turn reveals that an inverse energy cascade and aspects of a
confined 2D turbulence can coexist with a three dimensional bulk flow. In this work, 2D PIV measurements of
the velocity fields are carried out at a vertical cross-section xz-plane and at four distinct horizontal xy-planes at
different depths in Faraday waves. The results reveal that small and fast vertical jets penetrate from the surface
into the bulk with fast accelerating bursts and strong momentum transport in the z—direction. Furthermore, the
fraction of flow kinetic energy in the vertical direction is found to peak inside a layer of approximately 10 mm
(one Faraday wavelength) below the fluid surface.
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Figure 1: (a) Sub-surface velocity field in the xz-plane beneath Faraday waves (forcing frequency f¢ =50 Hz, Faraday wavelength
Ar = 9.5 mm). Neutrally buoyant, red fluorescent particles are used as fluid tracers. Fast vertical motion can be seen originating at the
fluid surface. Background-image obtained by averaging 16 successive PIV frames (inverted). (Right) Wavenumber energy spectra of the
horizontal velocity fields at the water surface (z = 0 mm) and at depth z = 3 mm. Inset (c) Net energy and enstrophy fluxes (ITg and Iz
respectively) of the horizontal velocity fields at the water surface (z =0 mm) and at depth z = 3 mm. The total depth of the water layer
is 30 mm. k¢ denotes the wavenumber at which the forcing occurs for AF/2.



Below this depth, the fast vertical motion dissipates in the bulk flow in a fashion similar to impinging jets on a
flat surface, which might be the driving force of the bulk flow, see Fig. [1|a). This interpretation is supported by
the analysis of energy spectra, as well as energy and enstrophy fluxes, see Fig. [T|b)-d), which show the existence
of a direct energy cascade (as shown by the positive net energy flux I1g (k) and the zero net enstrophy flux ITz(k),
coexisting with the inverse energy cascade localized on the fluid surface. Finally, for the first time we perform
time-resolved tomographic particle tracking velocimetry (4D PTV) in the bulk flow beneath the fluid surface,
in order to further investigate the 3D transport of energy and its dissipation mechanisms from the horizontal
surface flow to the bulk flow at lower depths. A schematic of the experimental setup is depicted and described
in Fig. [2]a), whereas Fig. 2]b) depicts reconstructed 3D trajectories of particles in a slice at the container centre.
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Figure 2: (Left) 4D PTV experimental setup. Four high-speed cameras are arranged in a tetrahedron configuration, and high-power
LEDs are used to illuminate a volume of approx. 160x 160x30 mm? at the center of the vertically-agitated container (@D = 300 mm),
filled with 30 mm of DI water and a solution of neutrally-buoyant, red fluorescent particles (150-180 um). 4D PTV data is evaluated with
the Flow Master tool (LaVision). (Right) Reconstructed 3D particle trajectories coloured with absolute velocity |V| = vu% +v2 +w? in
a volume slice of 40x 160x30 mm?>. The blue line represents the container filling height.
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