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Abstract
This work presents reconstructions of 3D pressure fields starting from 2D3C stereoscopic-PIV (SPIV) mea-
surements. In Fratantonio et al. (2021), we presented a new reconstruction algorithm, the “Instantaneous
convection” method, capable of producing 3D velocity fields from time-resolved SPIV measurements. For
reconstructions in flows with strong shear layers and high turbulence intensity, this method is able to pro-
vide time-resolved 3D velocity volumes that are more accurate than those that can be obtained from the
more frequently employed reconstruction method based on the Taylor’s hypothesis and on the use of a mean
convective field. Here we investigate the possibility of reconstructing the 3D pressure field from the time-
resolved series of reconstructed 3D velocity data. A pseudo-tracking method is employed for computing
the velocity material derivative, and the pressure field is then reconstructed by solving the 3D Poisson equa-
tion. The velocity and pressure reconstructions are validated on the Direct Numerical Simulation data of
the turbulent channel flow taken from the John Hopkins Turbulence Database (JHTDB), and an application
to experimental SPIV measurements of an air jet flow in coflow carried out at the Turbulent Mixing Tunnel
(TMT) facility at Los Alamos National Laboratory is presented.

1 Introduction
The last two decades have seen a fast development and improvement of tomographic PIV/PTV techniques
(Elsinga et al., 2006; Novara and Scarano, 2013), and, with the increasing availability of time-resolved 3D3C
velocity data, the existing algorithms for 2D pressure reconstruction (Charonko et al., 2010) have been ex-
tended to the 3D case and further improved to increase accuracy (Wang et al., 2016) and computational
efficiency (Huhn et al., 2016). Although tomographic PIV/PTV are now established techniques for perform-
ing 3D velocity measurements in fluid flows, the required experimental setup is still considered complex
and expensive, since it requires at least 4 cameras and high-repetition, high-power laser systems in time-
resolved measurements. Therefore, any alternative methods capable of providing accurate time-resolved 3D
velocity and pressure fields from less complex or expensive techniques are of great interest for the scientific
community. In this perspective, several authors exploited the Taylor’s hypothesis of frozen turbulence for
converting time-correlation information of single-point or 2D measurements into missing spatial-correlation
information. In applications of the Taylor’s hypothesis to SPIV measurements (Ganapathisubramani et al.,
2008), the time-resolved 2D3C velocity data uuu(x,y) at the SPIV measurement plane is converted into a 3D
velocity volume by application of the following hyperbolic operator, ∂uuu

∂t +w(x,y) ∂uuu
∂z = 000, with w(x,y) be-

ing the local mean out-of-plane velocity. We refer to this type of 3D velocity reconstruction as the “Mean
convection” (MC) method.

It has been practically demonstrated, however, that the Taylor’s hypothesis breaks down in highly-
turbulent and/or shear flows (Lin, 1953; Dennis and Nickels, 2008; Zaman and Hussain, 1981). Large-scale
turbulent structures cannot be considered “frozen” in a shear layer since they deform under the effect of the
transverse spatial gradients of the mean velocity profile, and velocity fluctuations might convect the turbu-
lent patterns with convective speed and direction different from those given by the local mean velocity. In
this context, we recently proposed a new algorithm of 3D velocity reconstruction from SPIV data (Fratanto-
nio et al., 2021), which we called the “Instantaneous convection” (IC) method and which we demonstrated



providing large 3D velocity volumes in shear flows that are more accurate than those provided by the MC
method. The IC method is a step-by-step Lagrangian-Eulerian reconstruction that (i) convects the 2D3C ve-
locity data in the 3D space with the local instantaneous velocity vector uuu = (u,v,w) and that (ii) “unfreezes”
the 3D flow through an iterative Poisson regularization of intermediate velocity reconstructions. It is the
combining effect of these two new features in the reconstruction process that produces the key difference
between the IC method and the MC method. Since the convective field used in the IC method for trans-
porting the flow properties in the 3D space corresponds to the local instantaneous velocity, enforcing the
divergence-free condition through the Poisson equation does not provide a simple regularization of the 3D
field, but also introduces a temporal and spatial development of the convective field itself, thus recovering
those non-linear fluid deformation mechanisms that would be otherwise lost when convecting the flow with
a “frozen” mean velocity profile. A brief description of the IC algorithm is provided in Section 2.1.

Our next goal is to investigate the possibility of recovering 3D pressure fields from time-resolved series
of 3D velocity fields reconstructed from SPIV measurements. The pressure field can be reconstructed by in-
tegration in the spatial domain of the pressure gradients. At present, there are two major classes of integration
methods, i.e., direct line integration of the pressure gradients or Poisson-based pressure solver (Van Oud-
heusden, 2013). Both reconstruction strategies first require measurements of the material flow acceleration,
Duuu
Dt , which can be obtained with different approaches, depending on what type of velocity data is available
(Van Gent et al., 2017). From time-resolved PTV measurements, the particle trajectories are directly mea-
sured and can locally provide Duuu

Dt data, which can then be interpolated on a Cartesian grid and integrated in
space for pressure reconstruction by means of sophisticated processing tools, such as FlowFit (Gesemann
et al., 2016) and VIC+ (Schneiders and Scarano, 2016). In this context, the recently proposed “Shake-the-
Box” method (Schanz et al., 2016) enabled applications of tomographic-PTV with particle seeding densities
comparable to that of tomographic-PIV, thus providing accurate and dense material acceleration data able
to enhance accuracy of pressure reconstruction. Our reconstructed 3D3C velocity data resemble more what
can be obtained from time-resolved tomographic-PIV measurements, from which the material acceleration
can be evaluated either with an Eulerian approach, where Duuu

Dt is computed in a stationary reference frame
from the temporal and spatial velocity derivatives (Jakobsen et al., 1997), or with a pseudo-tracking method,
where imaginary particles are distributed in the domain and their trajectories are computed by forward and
backward integration in time (Liu and Katz, 2006; Pröbsting et al., 2013). Other approaches that can ap-
proximate Duuu

Dt from a single 3D3C snapshot exist, such as the Taylor’s hypothesis approach of Laskari et al.
(2016) or the IVIC method proposed by Schneiders et al. (2016), but the IC or the MC methods can provide
time-series of velocity volumes with the same temporal resolution used in carrying out SPIV measurements,
and we can therefore rely on time-resolved 3D data for performing pressure reconstructions.

The application of these techniques to reconstructed SPIV velocity volumes has not been performed to
date, not even for velocity volumes reconstructed by the common MC method. To the best of our knowl-
edge, the work of de Kat and Ganapathisubramani (2012) is the only one that has tackled the problem of
evaluating the accuracy of pressure fields reconstructed from SPIV velocity data in conjunction with the
Taylor’s hypothesis, but they limited the analysis to the reconstruction of 2D pressure fields by means of
a 2D Poisson equation derived from the residual between the Taylor operator and the full Navier-Stokes
equations. They did not perform reconstructions of 3D pressure fields directly from large 3D reconstructed
velocity fields. In Section 3, both the IC and the MC method are validated by application to a Direct Nu-
merical Simulation (DNS) dataset of the turbulent channel flow taken from the John Hopkins Turbulence
Database (JHTDB), and an error analysis in terms of reconstructed 3D velocity and pressure fields is pre-
sented. Section 4 demonstrates an application of the reconstruction algorithms to an experimental dataset of
SPIV measurements of an air jet flow in co-flow performed in the Turbulent Mixing Tunnel (TMT) facility
at Los Alamos National Laboratory.

2 Reconstruction algorithms

2.1 Velocity reconstruction
The way the IC method performs the reconstruction has direct effects on the resulting 3D velocity and,
consequently, on the resulting 3D pressure field. Although all the details of the IC method can be found in
Fratantonio et al. (2021), in this section we briefly describe the main structure of the algorithm, which will
help in understanding the origins of eventual differences between the true fields and the reconstructed fields.

Starting from a set of SPIV measurements taken over a x,y-plane with a sampling time step ∆ts, the IC
method processes the 2D3C velocity planes through an iterative scheme. At each reconstruction iteration,



the flow system is evolved forward/backward in time for a time step ∆trec = n∆ts, which is chosen as an
integer multiple n of the SPIV sampling time step, during which a subset n of SPIV planes is introduced in
the system and is processed by the following steps:

1. data convection: each data point of the 2D3C velocity planes are convected in the 3D space by the
local instantaneous velocity uuu(x,y);

2. 3D interpolation: the resulting velocity data scattered in the 3D space are interpolated on a rectangular,
regular cartesian grid;

3. Poisson regularization: the Poisson equation for the velocity

∇
2uuu =−∇×ωωω, (1)

is applied on the intermediate 3D velocity field, thus recovering a divergence-free flow;

4. planes re-initialization: new 2D3C velocity planes are re-defined from the interior of the regularized
3D velocity field.

At the next algorithm iteration, the re-initialized planes along with new ones from the SPIV database are pro-
cessed by the same 4 steps above. The temporal evolution of the flow system happens during the convection
step, where virtual fluid particles are associated to each node of the 2D3C velocity plane. Because the SPIV
data do not provide any information on the flow structure in the out-of-plane direction, it is not possible to
know how the particle trajectories vary in time and space as soon as the particles leave the SPIV measure-
ment plane. Therefore, during the convection step of the IC method, the virtual particles are convected in
the 3D space at a constant-in-time local velocity, thus forming linear trajectories. The hyperbolic operator
that governs the velocity field of this phenomenon is Duuu

Dt = 0, which implicitly corresponds to enforce zero
pressure-gradients,

∇p = 0, (2)

during the dynamical evolution of the flow. This does not necessarily mean that the pressure integration
performed on the reconstructed 3D velocity volumes will provide a pressure field with zero fluctuations,
since the right form of the Navier-Stokes equation is used for pressure reconstruction. However, as it will
be shown in Section 3, the approximation introduced during the convection step produces evident signatures
on the velocity and pressure fields, and represents the most important source of errors introduced by the
IC reconstruction. This reconstruction error is, however, limited by the prompt application of the Poisson
equation on the intermediate 3D velocity field, a regularization that emulates the application of pressure
gradients that exist in a divergence-free flow.

The MC algorithm consists, instead, in simply convecting the 2D3C velocity data forward and backward
in space by means of the out-of-plane component of the mean velocity profile, w(x,y), and then interpolating
the final velocity data on a regular 3D Cartesian grid. A comparison of the resulting hyperbolic operator,
i.e., ∂uuu

∂t +w(x,y) ∂uuu
∂z = 000, with the Navier-Stokes equations also reveal that the implicit pressure-gradient field

applied to the flow during the mean flow convection is (see also Laskari et al. (2016)):

∇p =− [uuu−w(x,y) ẑzz] ·∇uuu (3)

As for the IC method, the distortions introduced by the pressure field of Eq. 3 has direct effects on the
accuracy of the reconstructed 3D velocity and pressure fields.

The final result of both reconstruction algorithms is a series of velocity volumes on a 3D Cartesian grid
with a time separation equals to ∆ts, i.e., the sampling time step used for performing SPIV measurements.

2.2 Pressure reconstruction
The reconstruction of the instantaneous pressure field requires first the evaluation of the pressure gradients,
which can be inferred from the temporal and spatial evolution of the 3D velocity field:

∇p =−ρ
Duuu
Dt

=−ρ
∂uuu
∂t

+uuu ·∇uuu. (4)



In Eq. 4, the viscous term has been neglected since its contribution is relevant only in flow regions very
close to the wall (Schneiders et al., 2016). Computations of the viscous term showed it was 2-3 orders of
magnitude smaller than the material acceleration term, and including it in the evaluation of the pressure
gradient did not provide any visible difference. The evaluation of the velocity material derivative from the
time-series of velocity volumes is performed by means of the pseudo-Lagrangian approach, which has been
shown to be more precise than the Eulerian approach when dealing with convective flows (Violato et al.,
2011). At the initial time t0, virtual particles are distributed at each node of the 3D velocity Cartesian grid.
Each particle trajectory is then reconstructed by evaluation of the particle location at times t±i = t0± i∆ts for
i = 1,2, ...,M, with M the number of forward or backward time steps. The particle position at the new time
ti+1 = ti±∆ts is produced by using the predictor-corrector method reported in Yu et al. (2012), in which the
predictor step provides a first estimate of the particle location,

xxx∗p (ti±1) = xxxp (ti)±∆tsuuu(xxxp (ti) , ti) , (5)

and the corrector step provides the final particle position,

xxxp (ti±1) = xxxp (ti)±∆ts
1
2
[
uuu(xxxp (ti) , ti)+uuu

(
xxx∗p (ti±1) , ti±1

)]
. (6)

The material acceleration is then computed with a least squares approach, as proposed by Pröbsting et al.
(2013). The velocity uuup (t±i) of the particles at time t±i along the reconstructed trajectory is calculated by
spline interpolation of the 3D3C velocity data. The material acceleration could be estimated using finite
differences by considering any possible time difference ∆ti = ti− t0 with respect to the starting time t0 and
the corresponding velocity variation ∆uuu(∆ti) = u j (xxxp (ti))−u j (xxxp (t0)) . This results in an over-determined
algebraic linear system for each component j of the material acceleration of the form

∆ttt
Du j

Dt
= ∆uuu j, (7)

with ∆ttt a vector gathering all time differences, and ∆uuu j gathering all corresponding velocity differences
for the j-component. The least squares solution of Eq. 7 finally provides an estimation of the material
acceleration at each node of the original 3D Cartesian grid:

Du j

Dt
=
(
∆tttT

∆ttt
)

∆tttT
∆uuu j (8)

At the volume boundaries, the forward/backward advection can move the virtual particles outside of the
domain, where velocity information is inaccessible. The pressure gradients computed at the boundaries are
therefore cropped out, so to provide more accurate boundary conditions for the pressure integration step.

The omni-directional integration method introduced by Liu and Katz (2006) is capable of efficiently
minimizing the influence of local errors in the material acceleration on the final reconstructed pressure field.
The Poisson-based pressure integration is instead known to be more prone to error propagation, especially
when pure Neumann conditions are used in large domain (Pan et al., 2016). Nevertheless, the extension of
the original 2D path integration method to 3D domains makes the number of required integration paths so
large that a computational parallelization is necessary to make this pressure integration strategy affordable in
terms of computational time (Wang et al., 2019). We, therefore, opted for a pressure integration based on the
simpler and more computationally efficient Poisson equation. By taking the divergence of the momentum
equation, the Poisson equation for the pressure reads:

∇
2 p =−∇ ·

(
ρ

Duuu
Dt

)
, (9)

which is completed by applying Neumann boundary conditions at each boundary face of the rectangular
domain:

∂p
∂n

=−ρ
Duuu
Dt
, (10)

with n the spatial coordinate normal to the boundary. The Laplacian operator is discretized by second-order
centered differences, and the Neumann boundary conditions are discretized by adding a ghost point out
of the domain. The resulting algebraic linear system is then solved by spectral decomposition, in which
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Figure 1: Schematic of the algorithm for 3D pressure reconstruction starting from SPIV velocity measure-
ments.

the projection of the right hand side onto the matrix eigenspace is performed by means of the Fast Fourier
Transform (FFT). In order to be able to employ the FFT for the projection, the eigenvector matrix has to
be orthogonal and composed of cosine and sine functions. To mantain the eigenspace form as such while
treating the Neumann boundary conditions with ghost points, the Poisson equation is solved on a staggered
grid instead of the original Cartesian mesh. Finally, the resulting 3D pressure field is re-interpolated on the
original grid, and the spatially averaged pressure over the entire volume is set to zero.

The resulting overall procedure for reconstructing 3D pressure fields from SPIV data is sketched in
Figure 1.

3 Numerical validation
The velocity and pressure 3D reconstructions provided by the IC and the MC methods are validated on
the DNS data of the turbulent channel flow available on the JHTDB (Kim et al., 1987). In the following,
all variables are non-dimensional, with the half-height channel H being the reference length and the bulk
velocity Wb being the reference velocity. The Cartesian coordinate system is defined so that the z-axis is
oriented towards the main flow direction, the y-axis represents the wall normal coordinate, and the x-axis
is oriented in the spanwise direction of the channel. Synthetic SPIV 2D3C velocity data are sampled on
a x,y-plane perpendicular to the main flow direction in a flow region close to the wall, i.e., in the range
150< y+ < 250, which is at the outskirt of the log-law region (Pope, 2001).

Since the JHTDB provides the DNS data on an inertial frame of reference moving in the flow direction
at speed of 0.45, the synthetic SPIV velocity measurements are also taken on the same moving reference
frame. This does not pose any particular problem for the purpose of validating the reconstruction algorithms.
It reduces the separation between the Lagrangian time scale, τη, and the Eulerian time scale, which is
defined by the convected Kolmogorov length scale as τEul = η/W , with W the average speed of the flow
in the region under consideration. For a given SPIV sampling time step ∆ts, this provides in turns a better
resolution of the Eulerian spectrum and, thus, a higher spatial resolution of the reconstruction in the flow
direction (see Fratantonio et al. (2021) for a more in-depth discussion of these aspects). The synthetic SPIV
measurements are performed at a non-dimensional sampling time step of ∆ts = 0.0065, thus resolving the
smallest eddy turn-over times but under-resolving the highest frequency of Eulerian spectrum, which is what
commonly happens in real SPIV measurements. Table 1 summarizes the most important flow characteristics,
including the Kolmogorov time and length scales, estimated from the largest turbulent dissipation rate ε
computed from the 3D DNS velocity, and the ratio of the SPIV sampling time step to the characteristic flow
time scales. By defining the velocity fluctuations as uuu′′′ = uuu− uuu, the turbulence intensity is computed from
u′rms =

√
u′2 + v′2 +w′2. The presence of a shear layer (dW/dy ≈ 1) and of a relatively-high turbulence

intensity (u′rms/W ≈ 20%) enhances the improvements provided by the IC method over the MC method, the
latter being expected to fail in accurately reconstructing large-scale structures.



Reb = 2HWb/ν W u′rms
W

dW
dy η =

(
ν3

ε

)1/4
τη =

(
ν

ε

)1/2
τη = η

W
∆ts
τη

∆ts
τEul

40000 0.49 0.2 1.16 0.0014 0.042 0.0026 0.155 2.5

Table 1: Non-dimensional flow characteristics. The non-dimensional kinematic viscosity is ν = 5 ·10−5.

3.1 Velocity and pressure reconstructions from synthetic SPIV data
For the velocity reconstruction, each volume is generated from 500 synthetic SPIV planes. For reducing
the computational time of each reconstruction, the IC algorithm processes n = 10 planes at each iteration,
thus the flow reconstruction evolves forward/backward in time with time steps of ∆trec = n∆ts = 0.065. The
reconstruction starts from z = 0, the SPIV measurement location, and extends downstream, in the z > 0
direction, i.e., the direction of the channel flow, and upstream, in the z < 0 direction. For the pressure
reconstruction, the virtual particle tracking is performed with M = 3, by advancing the particles position 3
time steps forward and 3 time steps backward, for which 7 velocity volumes have been used.

(a) (b) (c)

Figure 2: 3D pressure fields reconstructed from: (a) DNS velocity; (b) reconstructed IC velocity; (c) recon-
structed MC velocity. The spatially averaged pressure is set to zero for all volumes.

The reconstructed 3D velocity fields are not shown here, but very similar results in terms of reconstructed
3D vorticity fields can be found in Fratantonio et al. (2021). Figure 2 reports isosurfaces of the reconstructed
3D pressure fields. The 3D pressure field in Figure 2a is reconstructed from the exact DNS velocity volumes.
The DNS pressure field directly available from the JHTDB is in very good match with that of Figure 2a,
thus validating the pressure reconstruction tools (the material derivative computation and the Poisson solver)
developed for this work. Figures 2b and 2c show the pressure fields reconstructed by, respectively, the IC
method and the MC method. In general, neither of the reconstruction methods are able to fully reproduce
the pressure field correctly, especially on top and bottom of the volume, which are flow regions that are the
furthest from the measurement plane location, z = 0, where the reconstruction errors on the reconstructed
velocity are the highest ones. The IC method seems providing a reconstructed pressure field that does
not recover all small scale pressure fluctuations, but well reproduces large structures such as the two large
negative pressure lobes in the upstream region, −0.2 < z < 0. In contrast, the pressure field reconstructed
by the MC method show the same large structures in the wrong location, being convected with the wrong
speed and distorted by the mean shear layer profile ∂w

∂y .
However, the 3D pressure fields shown in Figure 2 allow us to visualize only the results at the domain

boundaries, where the reconstruction errors are the largest both for the velocity and pressure reconstructions.
For a better and more meaningful comparison of the IC and MC reconstructions, we reported in Figure 3
the 2D maps of the vorticity and of the pressure fields at a x,z-plane cutting the 3D volumes of Figure 2
at the center, at about y = 0.73. The vector fields on top of the 2D pressure maps correspond to the in-
plane velocity fluctuations (u′,w′). A qualitative comparison of the 2D maps of Figure 3 demonstrate that
the IC method provides better reconstruction than the MC method, both in terms of vorticity and pressure
fields. With reference to Figure 3c, the MC method tends to distort the flow field. The mean velocity



u′ w′ ‖ωωω‖ p
IC 0.973 0.996 0.887 0.898

MC 0.626 0.965 0.565 0.871

Table 2: Correlation coefficients computed on the 2D maps of Figure 3 for different flow properties.

profile w(x,y) moves the vortical structures with the wrong speed, so that they end in the wrong position
and stretched by the mean shear layer. For instance, by considering the two strong vortices in the upstream
region (−0.2< z<−0.1) indicated by the arrows in Figure 3, one of them is stretched in the flow direction,
while the second one is not even present in the flow field, being convected too far upstream. The IC vorticity
is instead in much better match with the exact vorticity field, with all vortical structures located in the
right spot, and no distortion is present. The higher reconstruction accuracy of the IC method is further
corroborated by the correlation coefficients reported in Table 2, which have been computed over the same
2D plane for different flow properties. It is, however, evident that the IC method tends to reduce the intensity
of the strongest vortices in the field, as it happens for the intense vorticity regions indicated by the arrows
in Figure 3. As also discussed in Fratantonio et al. (2021), these features are a direct consequence of how
the 2D3C velocity data are convected in the 3D space. With the implicit zero-pressure gradients enforced
on the flow during the convection step of the IC method, there is no pressure gradient field that would keep
a vortex together as it happens in divergence-free flow. There are no pressure forces that would prevent
those fluid portions at the vortex center that rotate faster to crash on and to compress outer fluid layers that
rotate slower. This results in an expansion of the vortices, with a consequent weakening of their intensity.
In the reconstructed pressure field, the amplitude of the negative pressure fluctuations at the center of the
weakened vortices is, consequently, smaller.

(a) (b) (c)

Figure 3: Instantaneous enstrophy (top row) and pressure (bottom row) fields over a 2D plane cutting the
volumes of Figure 2 at y = 0.73: (a) DNS data; (b) IC reconstruction; (c) MC reconstruction. The 2D
pressure map in (a) is extracted from the 3D pressure field reconstructed from the DNS velocity volumes.
The vector fields on top of the pressure maps represent the in-plane velocity fluctuations (u′,w′). The arrows
indicate the same vortices and the corresponding negative pressure fluctuations regions across the various
reconstructions.



3.2 Reconstruction error analysis
For a more quantitative analysis of the reconstruction accuracy, we analyzed the error between the exact
DNS fields and the reconstructed ones. For the velocity reconstruction, we define the relative error

εu =
‖uuurec−uuuex‖2

‖uuuex‖2
. (11)

In Figure 4a, we reported the average value of εu computed over x,y-planes cutting the reconstructed 3D
velocity field at different z-positions along the flow direction. In Figure 4b, we also reported the correlation
coefficient between the DNS vorticity and the reconstructed vorticity fields computed on the same 2D cuts
as a function of z. As expected, the relative error εu increases as a function of the distance from the SPIV
measurement plane location, i.e., z = 0, where the error is identically zero, since the reconstructed volume is
centered on the synthetic SPIV velocity plane extracted directly from the DNS data. While the MC method
provides 3D velocity fields with reconstruction errors that go up to more than 15%, the IC method is able
to provide reconstructions with about half the errors, with maximum values of less than 10%. The improve-
ments provided by the IC method are even more evident by looking at the results of Figure 4b, showing
an evident drastic drop in the correlation between the DNS vorticity and the MC vorticity fields, even for
reconstructed volumes as small as z = [−0.05;0.05], and a much better match of the IC reconstruction with
the exact vorticity field, with correlation cofficients of about 0.9 even for reconstructed volumes as large as
z = [−0.15;0.15]. Although not shown here, curves very similar to those of Figure 4b can be obtained for
the turbulent dissipation rate ε.

(a) (b) (c)

Figure 4: (a) Average velocity reconstruction error εu as a function of z; (b) correlation coefficient between
exact enstrophy field and reconstructed enstrophy field as a function of z; (c) absolute value of the average
pressure reconstruction error εp as a function of z. The square, blue symbols refer to the IC reconstruction,
and the circle, brown symbols to the MC reconstruction. The average errors and the correlation coefficient
are computed over x,y-planes at each z-location, with z = 0 corresponding to the position of the SPIV
measurement plane.

Defining a relative error for the pressure reconstruction similar to that of Eq. 11 gives error values that are
very high, as high as 1000% in regions of the flow where the pressure value is close to zero. Nevertheless,
the errors in the reconstructed 3D velocity fields are in the range 5-15%, and, for such error levels in the
velocity data, similar high relative errors on the reconstructed pressure has been observed even in application
of the Poisson-based integration method to 2D flows (Charonko et al., 2010). For the same amount of errors
in the velocity data, it has been observed that the omni-directional integration method is more efficient
to average out the local errors in the pressure gradients computed from noisy velocity data, although the
relative errors on the reconstructed pressure can still be very high in flow regions where the pressure is
close to zero. For having a more meaningful comparison between the IC and the MC methods in terms
of pressure reconstruction accuracy, we consider instead a definition of the pressure error similar to that
proposed in Wang et al. (2019), in which the pressure error difference is normalized by the turbulent kinetic
energy:

εp =
prec− pex

T KEex
. (12)



In Eq. 12, we defined T KEex =
1
2 ρ

(
u′2ex + v′2ex +w′2ex

)
as a spatially-averaged turbulent kinetic energy of the

DNS velocity fluctuations, and we considered as reference pressure pex the 3D pressure field reconstructed
from the DNS velocity volumes. Figure 4c reports the average error εp computed as a function of z. Since
the errors in the velocity reconstructed by the MC method are higher, the IC algorithm performs in general
better even in terms of pressure reconstructions, except in the region −0.1 < z < 0, where the IC errors
are slightly higher than the MC ones. As for εu, the average error εp is almost zero close to z = 0 and
increases with the distance from the SPIV measurement plane location, which indicates how the accuracy
of the pressure reconstruction is directly affected by the local errors in the velocity data and the computed
material acceleration.

An analysis of the local error distribution can provide a better insight on the exact origin of the errors
in the velocity and pressure reconstructions. With reference to the 2D maps of Figure 3, the local value of
the pressure error εp is shown in Figure 5, where the vector field represents the error on the reconstructed
in-plane velocity fluctuations. The average value of the error distributions of Figure 5 are 0.004 and 0.0194
respectively for the IC and the MC pressure reconstructions. With reference to Figure 5, the local pressure
error given by the MC reconstruction is almost everywhere higher than that given by the IC method. More
precisely, the largest velocity and pressure errors in the IC reconstruction are localized at the center of the
strongest vortices in the flow. As discussed in the previous section, the inherent expansion of the strong
vortices that occurs during the convection step of the IC method results in weakening the intensity of the
vortices and, consequently, in a lower magnitude of the depressions at the center of the same vortices.

(a) (b)

Figure 5: Local pressure reconstruction error εp given by (a) the IC method and (b) the MC method for
the 2D pressure field shown in Figure 3. The vector field represents the error on the in-plane velocity
fluctuations, i.e., (u′rec−u′ex,w

′
rec−w′ex).

4 Velocity-pressure reconstruction from SPIV measurements
The reconstruction algorithms are applied to real experimental SPIV measurements performed in the Tur-
bulent Mixing Tunnel facility at Los Alamos National Laboratory. The tunnel has a cross section area of
0.524×0.524 m2, inside which an air jet is issued downward from a circular copper pipe with inner diam-
eter D = 11 mm, and a coflow is generated by a fan located downstream. SPIV measurements are carried
out at a sampling frequency of fs = 2 kHz by using two high-speed Phantom® VEO 640S cameras working
in dual-exposure mode, and a dual head Nd:YAG laser delivering 20 mJ/pulse at 532 nm. The SPIV mea-
surement plane is perpendicular to the jet flow direction and is located at a distance 16D downstream from
the pipe outlet. Currently, the experimental facility does not include simultaneous, alternative diagnostic
techniques for providing measurements of pressure or velocity, and, therefore, we cannot directly assess the
accuracy of the velocity-pressure reconstructions. We limit the following analysis to a comparison of the
reconstructions provided by the IC and the MC methods. For this experimental test, we considered an air
jet with an average speed of 6.3 m/s at the pipe outlet, which corresponds to a Reynolds number Re = 4250,
and a coflow speed of about 0.8 m/s. At the measurement location, the average speed at the jet centerline
is 2.2 m/s. Figures 6a and 6b show the 3D vorticity and pressure fields reconstructed by, respectively, the



IC method and the MC method. The appearance of more vortical structures in the MC reconstruction is
partly due to the vortex-expansion issue affecting the IC convection and partly due to the smoothing effect
of the iterative Poisson regularization. The vorticity and pressure reconstructions around the SPIV measure-
ment plane are very much alike for the IC and MC methods, corroborating the error analysis of Section 3.2.
However, as the reconstruction develops in the upstream and downstream directions, the two reconstructions
become qualitatively different in terms of position, orientation, and magnitude of the pressure and velocity
fields, for which the numerical analysis of the previous section suggests that the IC reconstruction is more
accurate than the MC one.

(a) (b)

Figure 6: Reconstructed 3D velocity and pressure fields from experimental SPIV data: (a) IC reconstruction;
(b) MC reconstruction. The brown isosurfaces correspond to the z-component of the vorticity with value
|ωz| = 400s−1. The green isosurfaces correspond to the azimuthal component of the vorticity with value
|ωθ|= 500s−1. The countour maps and lines correspond to the reconstructed pressure field.

5 Conclusions
In this work, we numerically and experimentally investigated 3D pressure reconstructions starting from
2D3C SPIV velocity measurements. We numerically demonstrated that the IC method introduced in Fratan-
tonio et al. (2021) is more accurate than the MC method in reconstructing 3D velocity and pressure fields
in turbulent flows with shear layer. In Section 4, we presented a practical demonstration of the reconstruc-
tion algorithms on real SPIV measurements of an air jet in coflow. As for the MC method, the IC method
can be applied only to convective flows, in which the flow is crossing the SPIV measurement plane in one
direction only. This guarantees the existence of a main flux of flow information filling the reconstruction
domain. For this reason, the presence of a coflow around the main jet is required for extending the volumet-
ric reconstruction to outer flow regions. The error analysis presented in Section 3.2 also revealed that the
largest reconstruction errors introduced by IC method are mainly localized in the regions of strong vorticity.
Currently, we are working in improving the IC algorithm from this point of view, thus further improving
both 3D velocity and pressure reconstructions. The IC algorithm is, therefore, a promising processing tool
for obtaining accurate 3D velocity and pressure fields from time-resolved SPIV measurements.
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Schneiders JF, Pröbsting S, Dwight RP, van Oudheusden BW, and Scarano F (2016) Pressure estimation
from single-snapshot tomographic piv in a turbulent boundary layer. Experiments in Fluids 57:53

Schneiders JF and Scarano F (2016) Dense velocity reconstruction from tomographic ptv with material
derivatives. Experiments in fluids 57:1–22

Van Gent P, Michaelis D, Van Oudheusden B, Weiss PÉ, de Kat R, Laskari A, Jeon YJ, David L, Schanz
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